A wavelet-in-time, finite element-in-space adaptive method for parabolic evolution equations

نویسندگان

چکیده

Abstract In this work, an r -linearly converging adaptive solver is constructed for parabolic evolution equations in a simultaneous space-time variational formulation. Exploiting the product structure of cylinder, family trial spaces that we consider are given as spans wavelets-in-time and (locally refined) finite element spaces-in-space. Numerical results illustrate our theoretical findings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems

In this paper we summerize recent results on a posteriori error estimation and adaptivity for space-time finite element discretizations of parabolic optimization problems. The provided error estimates assess the discretization error with respect to a given quantity of interest and separate the influences of different parts of the discretization (time, space, and control discretization). This al...

متن کامل

Space-time adaptive wavelet methods for parabolic evolution problems

With respect to space-time tensor-product wavelet bases, parabolic initial boundary value problems are equivalently formulated as bi-infinite matrix problems. Adaptive wavelet methods are shown to yield sequences of approximate solutions which converge at the optimal rate. In case the spatial domain is of product type, the use of spatial tensor product wavelet bases is proved to overcome the so...

متن کامل

An efficient space-time adaptive wavelet Galerkin method for time-periodic parabolic partial differential equations

We introduce a multitree-based adaptive wavelet Galerkin algorithm for space-time discretized linear parabolic partial differential equations, focusing on time-periodic problems. It is shown that the method converges with the best possible rate in linear complexity and can be applied for a wide range of wavelet bases. We discuss the implementational challenges arising from the Petrov-Galerkin n...

متن کامل

Space-Time Adaptive Wavelet Methods for Optimal Control Problems Constrained by Parabolic Evolution Equations

An adaptive algorithm based on wavelets is proposed for the efficient numerical solution of a control problem governed by a linear parabolic evolution equation. First, the constraints are represented by means of a full weak space-time formulation as a linear system in `2 in wavelet coordinates, following a recent approach by Schwab and Stevenson. Second, a quadratic cost functional involving a ...

متن کامل

A Finite Element Collocation Method for Quasilinear Parabolic Equations

Let the parabolic problem cix, t, u)ut = aix, t, u)uxx + bix, t, u, ux), 0 < x < 1, 0 < / á T, uix, 0) = fix), w(0, t) = gli), ií(1, t) = giit), be solved approximately by the continuous-time collocation process based on having the differential equation satisfied at Gaussian points £,,i and £;,2 in subintervals (x,-_i, x¡) for a function l/:[0, T] —» 3C3, the class of Hermite piecewise-cubic po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Computational Mathematics

سال: 2022

ISSN: ['1019-7168', '1572-9044']

DOI: https://doi.org/10.1007/s10444-022-09930-w